Geodesic Active Regions for Texture Segmentation
نویسندگان
چکیده
This paper proposes a framework for segmenting di erent textured areas over synthetic or real textured frames by curves propagation. We assume that the system has the ability to be taught over di erent texture prototypes. For each prototype a global statistical model is generated, as a set of probability density functions attributes from a multi-valued frame analysis, where di erent lter responses are used to create this multi-valued frame. Then, each prototype is represented by a reliable statistical model. Given an input frame composed of di erent texture types, the same bank of lters is applied. Over the generated multi-valued frame, we de ne an energy as a special form of a geodesic active contour model, a Geodesic Active Region Model, where we integrate boundary nding and region based segmentation approaches. This energy is minimized using a steepest gradient descend method, where smoothing, edge-based, and region statistics forces, move the curve toward the minimum of the designed objective function. Using the level set formulation scheme, complex curves can be detected, while topological changes for the evolving curves are naturally managed. In order to deal with the problem of noise in uence, as well as to reduce the required computational cost, a multi-grid approach has also been considered. Finally, two di erent methods are used for the level set implementation, the Narrow Band and the Hermes Algorithm. Very promising experimental results are provided using synthetic and real textured frames. Key-words: Texture Segmentation, Filters Bank, Statistical Modeling, Geodesic Active Contours, Geodesic Active Regions,Partial Di erential Equations, Level Set This work was funded in part under the VIRGO research network (EC Contract No ERBFMRX-CT96-0049) of the TMR Programme. Régions Actives Géodésiques pour la Segmentation de Textures Résumé : Dans ce rapport, nous présentons une méthode de segmentation d'images texturées, en faisant évoluer une courbe initiale qui converge, tout en pouvant changer de topologie, vers les frontières des di érentes parties texturées présentes dans l'image. La méthode repose sur plusieurs parties dont la première consiste en une phase d'apprentissage préalable qui permet d'associer à chaque texture donnée un vecteur d'attributs issus d'une analyse statistique des densités de probabilité d'un ensemble de sous-images. Celles-ci proviennent de l'application à la texture concernée d'un banc de ltres bien adapté pour cette tâche de modélisation..Une énergie, qui intègre des informations sur la texture de la région et sur sa frontière, est ensuite proposée a n de formaliser la tâche de segmentation en une approche variationnelle. L'équation d'Euler-Lagrange, déduite de la minimisation de cette énergie, est alors utilisée a n de déformer une courbe initiale, considérée comme un contour actif géodésique qui va converger vers les di érentes frontières des régions texturées présentes dans l'image, d'où le nom de Régions Actives Géodésiques associé à cette approche. La résolution de l'EDP par la méthode des courbes de niveau d'Osher et Sethian permet ensuite de mettre en oeuvre de manière e cace le processus d'évolution des contours tout en gérant automatiquement d'éventuels problèmes de changement de topologie durant la phase d'évolution.Une approche multi-résolution et les versions rapides, connues sous le nom de NBA et Hermes sont aussi utilisées pour mettre en oeuvre la méthode. Divers résultats expérimentaux sur des données synthétiques et réelles illustrent les remarquables capacités de cette nouvelle méthode. Mots-clés : Segmentation de textures, Modélization statistique, Contours actifs Géodésiques, EDP, Courbes de niveau, Minimisation d'énergie. Geodesic Active Regions for Texture Segmentation 3
منابع مشابه
Unsupervised Texture Segmentation via Applying Geodesic Active Regions to Gaborian Feature Space
In this paper, we propose a novel variational method for unsupervised texture segmentation. We use a Gabor filter bank to extract texture features. Some of the filtered channels form a multidimensional Gaborian feature space. To avoid deforming contours directly in a vector-valued space we use a Gaussian mixture model to describe the statistical distribution of this space and get the boundary a...
متن کاملA Novel Active Contour Model for Texture Segmentation
Texture is intuitively defined as a repeated arrangement of a basic pattern or object in an image. There is no mathematical definition of a texture though. The human visual system is able to identify and segment different textures in a given image. Automating this task for a computer is far from trivial. There are three major components of any texture segmentation algorithm: (a) The features us...
متن کاملGeodesic Active Regions for Supervised Texture Segmentation
This paper presents a novel variational method for supervised texture segmentation. The textured feature space is generated by filtering the given textured images using isotropic and anisotropic filters, and analyzing their responses as multi-component conditional probability density functions. The texture segmentation is obtained by unifying region and boundary-based information as an improved...
متن کاملGeodesic Active Contours Applied to Texture Feature Space
Gabor Analysis is frequently used for texture analysis and segmentation. Once the Gaborian feature space is generated it may be interpreted in various ways for image analysis and segmentation. Image segmentation can also be obtained via the application of ”snakes” or active contour mechanism, which is usually used for gray-level images. In this study we apply the active contour method to the Ga...
متن کاملSegmentation of Bone in Clinical Knee MRI Using Texture-Based Geodesic Active Contours
This paper presents a method for automatic segmentation of the tibia and femur in clinical magnetic resonance images of knees. Texture information is incorporated into an active contours framework through the use of vector-valued geodesic snakes with local variance as a second value at each pixel, in addition to intensity. This additional information enables the system to better handle noise an...
متن کامل